Aqueous Methods for the Cleaning of Painted Surfaces

Day 2: Thickeners, Spreadable Gels, Hydrogels; Clearance and Residues

Matthew Cushman 2 August 2023

1

Session Outline

- Some loose definitions
 - · Thickeners, aqueous gels, hydrogels
- · Why gels? Useful properties for cleaning
 - Practical considerations
 - · Gel rheology
- Gel materials in aqueous cleaning applications
 - · Cellulose ethers, Pemulen TR-2, xanthan gum, sclerotium gum
- Hydrogels
 - Agarose, Nanorestore gels, xanthan/locust bean gum gels, curdlan

ODS FOR THE CLEANING OF PAINTED SURF 1-4 AUGUST 2023

3

Some Loose Definitions

Thickener / Thickening Agent

A hydrophilic, relatively high-molecular-weight material added to a solution to **increase viscosity** with little influence on the structure or fluid dynamics of the solution

Aqueous Gel

A solution with a concentration of thickening agent:

- having a **semi-solid**, weakly cohesive structure
- having varied response to applied shear

•

AQUEOUS METHODS FOR THE CLEANING OF RIGA, LATVIA 1-4 AUGUST 2023

Δ

Some Loose Definitions

Hydrogel

A **hydrophilic**, three-dimensional network of **entangled and/or cross-linked** polymeric material containing **>~90% water**.

Despite its high water content, the hydrogel is not soluble in water!

5

Why Gels?

ODS FOR THE CLEANING OF PAINTED SURFAC 1-4 AUGUST 2023

Why Gels? Practical Considerations • Handling Properties: Control! • Health & Safety • Economic Considerations

- Economic Considerations
- Synergy with Other Aqueous Solution Parameters!

11

Useful Properties to Exploit

- Increased viscosity
- Shear thinning
- Gel cohesion
- Elasticity/Rigidity
- Water retention

Useful Properties to Exploit

- Solvent stabilization/ Emulsification
- Thermo-reversibility/ Heat stability

13

RIGA. LATVIA TO 1-4 AUGUST 2023 KEY CONCEPTS

Factors Determining Gel Properties & Rheology

Thickener/gel molecular weight & concentration

- Polymer/oligomer structure
 - · Straight vs. branched
 - Regularity/homogeneity of repeat units
 - Degree of substitution: frequency of side chains
 - Hydrophilic & hydrophobic substructures
 - If hydrophilic: Ionic? Hydrogen bonding?

15

Factors Determining Gel Properties & Rheology

- Solution parameters ("solvent quality")
 - pH gel stability; ionization state of acid groups
 - Ionic environment (conductivity, e.g.)
 - \bullet Presence of divalent metal ions (Ca $^{2+},\,e.g.)$ ionic crosslinking
 - Co-solvents' concentration and solubility parameters
- Processing
 - Physical mixing
 - Crosslinking (chemical gels)
 - Temperature processing

LATVIA 1-4 AUGUST 2023

Gel Polymers

- Natural polymers
 - Proteins
 - Polysaccharides

Simple preparation

- Synthetic polymers
 - · In theory: great variety of options
 - In practice: additional processing requirements
 - Increased possibilities for crosslinking (chemical gels)

17

Factors Determining Gel Properties & Rheology

Intentional polymer selection, concentration, appropriate thermal processing, solution formulation will result in gels that:

- are brittle, tough, elastic, stiff, loose, cohesive, fluid
- control delivery of aqueous chemistry
- provide beneficial working properties for the conservator

AQUEOUS METHODS FOR THE CLEANING OF PAINTED SURIGA, LATVIA $_{1-4}$ AUGUST 2023

19

Mass Transfer: Practicalities

- Predicting mass transfer can be difficult:
 - · Heterogeneous gel pore/mesh size
 - · Gel surfaces often have small flaws
 - Surface contact can be incomplete
 - Unpredictable interactions between solutes & gel matrix
 - Unpredictable influence of object porosity, condition, treatment history etc. etc. etc.

Mass Transfer: Practicalities

- Questions to ask:
 - Are we able to control the delivery of moisture?
 - Is the solution achieving the desired result?
 - Is the time scale appropriate?
 - · Are solubilized/affected materials sorbed into/onto the gel, or do they remain at the surface of the object?
 - Once cleaning is complete, are there signs of residues from the gel matrix and/or the delivered solution?

21

Useful Equipment

- Scale
 - Ideally: accuracy better than 0.05g (kitchen scales < USD 20.00)
- Mixers
 - Magnetic stir plates (some compact units < USD 40.00)
 - Battery-powered milk frothers/mixers (USD 6.00–20.00)
 - · Stir rods, spatulas

Useful Equipment

- Hot plate
 - For water baths (search for home brewery equipment)
- Immersion circulator
 - For precision temperature control (some models USD 60.00)
- Microwave

23

Measuring pH of Gels

- Use enclosed, all-in-one electrodes
- "Swiss spear" type meant for soft foods; flat surface probes
- pH indicator papers or test strips

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

SELECTED SPREADABLE GEL MATERIALS

25

Cellulose Ethers

O-CH₃ H₃C OH OH

Broad range of substituted celluloses

- •Methylcellulose, HPMC, HEC, CMC...
- •Can be nonionic or anionic (Sodium CMC, e.g.)
- •Grades vary in degree of substitution, molecular weight

Practical Considerations

- Inexpensive
- •Soluble in cold water
- •Prone to agglomeration, foaming during formulation
- •Concentration in solution will depend on selected product and desired properties!

Cellulose Ethers

Very good general-purpose thickeners:

- Compatible with pH, conductivities common in conservation cleaning
- Compatible with redox reagents
- Compatible with enzymes, resin/bile soaps, surfactants
- Some solvent stabilization, depending on substitution
- Shear-thinning (pseudoplastic) behavior

Other applications: hydration of adhesive residues; adhesive/consolidant

27

Cellulose Ethers

Name	Туре*	Usage Ratio	Solubility	Viscosity @2%	Gelling Temp	Gel Strength
SGA7C	MC	0.1-3%	Cold	700cp (med)	100-114F (38-44C)	Very Firm
A15C	MC	0.1-3%	Cold	1500cp (med)	100-114F (38-44C)	Firm
A4C	НРМС	0.1-3%	Cold	400cp (low)	100-114F (38-44C)	Firm
E4M	НРМС	0.1-3%	Cold	4000cp (high)	136-147F (58-64C)	Semi-Firm
F50	НРМС	0.1-3%	Cold	50cp (very low)	143-154F (62-68C)	Semi-Firm
K100M	НРМС	0.1-3%	Cold	100,000cp (very high)	158-194F (70-904C)	Soft
LV	MC	0.5-0.75%	Cold	450cl (low)	118-132F (47-55C)	Soft
HV	MC	0.5-0.75%	Cold	4500cp (high)	132-148F (55-64C)	Soft

Gel Temperature

- Generally unimportant for cleaning applications
- Forms a thermoreversible gel in narrow ranges

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

(2)

Pemulen TR-2

Copolymer: poly(acrylic acid)/C10-C30 alkyl acrylate

- •C10-C30 alkyl acrylate present in blocks
- White powder
- Fairly easy formulation

Practical Considerations

- Inexpensive (USD 8.00/100g)
- No temperature processing necessary
- ·Must be neutralized to form a gel
- •Typical concentrations: 1–1.5%
- Able to form stable emulsions with non-water-miscible solvents

29

Pemulen TR-2: Neutralization

Neutralization/deprotonation of acrylic acids

- •Must add a base to the solution
- •Deprotonation provides charge repulsion, allowing for hydration and **unfolding of the polymer**
- Common options: sodium hydroxide, triethanolamine

Some thoughts about triethanolamine:

- Imparts some solvent parameters to the solution
 - HSP: dd 17.3, dp 22.4, dh 23.3
- Can buffer the solution (7.3–8.3)
- Can be a good complexing agent for Al3+!

ion, allowing for ner triethanolamine ne: to the solution

Pemulen TR-2: Formulations

Stock solution for testing:

- •2% Pemulen TR-2, distilled/deionized water, base
- •With clean glassware and tools, rare microbial growth
- •Can add a preservative (phenoxyethanol, Germaben)
 - Omit preservative in final cleaning formulation!

Using the stock solution:

- Measure out a volume of stock Pemulen TR-2
- Add equal volume concentrated aqueous solution (2x buffer, 2x chelator, 1x conductivity)
- Most stable between pH 6-9

31

Pemulen TR-2: Formulations

AQUEOUS METHODS FOR THE CLEANING OF PAINTED SURF.
RIGA, LATVIA 1-4 AUGUST 2023

1

BEOUS METHODS FOR THE CLEANING OF PAINTED SURFJA, LATVIA 1-4 AUGUST 2023

Xanthan Gum

Bacterial branched ionic gum

- Cellulose backbone
- Anionic trisaccharide side chains

Practical Considerations

- •Inexpensive (USD 6.80/100g)
- •No temperature processing necessary
- Readily hydrates in cold water
- •Typical concentrations: 0.75-1.5%
- Very viscous solutions
- Exceptional shear thinning

33

Xanthan Gum: Formulations

Stock solution for testing:

- •2% xanthan, distilled/deionized water
- •Even with clean glassware and tools, ready microbial growth
- •Add a preservative (phenoxyethanol, Germaben)
 - Omit preservative in final cleaning formulation!

Using the stock solution:

- Measure out a volume of stock xanthan solution
- Add equal volume concentrated aqueous solution (2x buffer, 2x chelator, 2x conductivity)
- Stable between pH 2–12

DTPA Case Study: Washington Portrait, c. 1810.

TOTAL Case Study: Washington Portrait, c. 1810.

**TOTAL Case Study: Washington Portra

DTPA Case Study: Washington Portrait, c. 1810.

- 0.5% DTPA, buffered to pH 5.5, 1.5% xanthan gum
- Hydrophobic solvent applied to inhibit gel ingress
- · Agitation with a brush under magnification
- · Cleared with pH 5.5 'pH adjusted water' from MCP

37

DTPA Case Study: Washington Portrait, c. 1810.

•

41

Polysaccharide Selection

- Rigid, brittle gels:
 - More homogenous (homopolymers)
 - More crystalline in behavior (linear, rod-like structures)
 - · Fewer side chains, less branching
 - Increased junction density (crosslinking, chain entanglement)
- Flexible, elastic gels
 - · Heteropolymers and branched polymers
 - · Polymer networks capable of significant swelling
 - High density of strong and weak chain-chain interactions

QUEOUS METHODS FOR THE CLEANING OF PAINTED SURFACES 11GA. LATVIA 1-4 AUGUST 2023

Effect of Processing

By adding enough energy to the system, we allow polymer chains to fully hydrate and exist as random coils in solution.

Random coils then self-arrange to concentrate hydrophobic interactions (CH₂ backbone) and hydrophilic interactions (hydrogen bonding, coordinated water, ions) to form a somewhat regular structure

43

Diffusion in Hydrogels

- Solutes will diffuse through hydrogels if:
 - It would normally diffuse freely in a solution of the same composition
 - The solute is smaller than the mesh/pore size of the hydrogel
- Diffusion will be inhibited if:
 - The solute encounters an energetically favorable location
 - The average mesh size ≤ solute size

45

Capillary Action in Hydrogels

- In simplistic terms:
 - Capillary action is driven by surface forces between the gel material and the liquid phase
 - Capillary action is spontaneous and occurs without the application of external pressure
 - A simple model of capillary action in hydrogels: a bundle of tubes with a uniform radius

In a hydrophilic, porous medium, it is expected that capillary forces will imbibe water into the structure.

•

Syneresis

- With applied stress, and relaxation of stress, the microstructure of the gel can be altered:
 - · Helical structures can tighten
 - · Physical bonds can break and reform
 - The gel structure can become more dense
- and water can be expelled spontaneously: syneresis!
- Syneresis can be caused by slight temperature changes, gel "maturation", introduction of differing solvent quality

47

General Trends: Rheology and Moisture Retention

With decreasing pore size:

- · Decreased rates of diffusion
- · Increased capillary action

With increasing brittleness:

· Increased syneresis

Increased polymer concentration and junction density will increase moisture retention

Flexible, elastic gels will exhibit decreased syneresis

AQUEOUS METHODS FOR THE CLEANING OF PAINTED SI RIGA, LATVIA 1-4 AUGUST 2023

General Concepts: Hydrogels

- Think of hydrogels as a "vessel" for delivering water/moisture
- Lower polymer concentration: more open structure; vessel empties faster
- Better surface contact: more efficient diffusion and capillary action
- Smaller mesh/pore size: increased capillary action, but slower delivery. *Testing will help you to find the balance!*

49

Moisture Delivery and Retention

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

HYDROGEL FORMULATION FOR CONSERVATORS

51

Water Bath Method

- Set bath temperature above the hydration/melting temperature
- Disperse polymer in distilled water (or other solution) in a well-sealed container
- Submerge container in bath; remove periodically to mix contents
- Allow the contents to reach the bath temperature; remove from bath
- As solution cools, but before gelation, pour into mold

Microwave Method

- Disperse polymer in distilled water in a microwave-safe container. Cover loosely!
- Microwave on half power for 20-30s, 3-5x total
- Remove from microwave and swirl after each heating
- Avoid allowing the solution to boil over!

https://www.youtube.com/watch?v=V490KuFsU4k

· As solution cools, but before gelation, pour into mold

53

Useful Equipment - Molds

- · Silicone molds food prep, baking, candy making
- Glass containers Petri dishes, watchglasses, ashtrays
- Pyrex dishes
- Mylar/ Melinex trays

(4)

Useful Equipment - Molds

55

Incorporating Aqueous Cleaning Solutions into Hydrogels

Option 1: Loading prepared solutions into prepared gels

- Prepare the hydrogel and aqueous solution separately
- Place the gel sheet/block in the solution for 12-24 hours
- Blot the gel so that there is no liquid solution at the surface
- · Place the gel sheet/block on the target surface
- Repeat applications may be necessary

This is the most reliable method for ensuring that gel properties are not compromised.

Incorporating Aqueous Cleaning Solutions into Hydrogels

Option 2: Prepare the gel with aqueous cleaning agents

- Include buffer, ionic material, chelating agents into the initial formulation
- If preparing a gel that forms during cooling, add temperature-sensitive ingredients (surfactants, enzymes, e.g.) once the solution has reached a safe temperature, before reaching the gelation temperature.
- Blot gel to remove surface liquid solution before use.

Most chelating agents, salts, and buffers used in conservation can be heated to the necessary temperatures

57

AGAR & AGAROSE

Agar - Industrial Production

• Agar is a biopolymer contained within cell walls of red algae

• Major component: agarose

- Fraction inhibiting gelling: **agaropectin(s)**, a complex mixture of carbohydrates and <u>sulfates</u> thereof
- Cold waters → thicker cell walls (more to extract)

Geographical location, environmental factors contribute to product quality

59

Usable Agar Products

- Food-grade agar ~10-30 USD/100g
- Technical agars (bacteriological) ~30 USD/100g

Agarose

Purified biological extract from red algae species

•Repeating disaccharide, agarobiose

Practical Considerations

- •Very expensive (USD 104.00/100g) for pure material
- •Requires heating beyond melting temperature
- •Forms a rigid, brittle gel upon cooling below gelation temp.
- •Thermo-reversible
- •Gel pore structure depends on solution concentration

61

Agarose

One method for producing a 5% agarose gel:

- Mix 5% w/v agarose in distilled water
- · Microwave on half power, 20s, three times
- Remove from microwave and swirl in between heatings
- Do not allow the agarose to boil over
- Remove from microwave. Stir as it begins to cool.
- As the solution cools, but before gelation, can add:
 - Preservative, enzymes, buffers, chelators...

Agarose Structure

Upon cooling, gel remains <u>water insoluble</u>, but hydrophilic. Can load aqueous solutions, microemulsions, some polar solvents for surface delivery.

63

Agarose Structure

2% Agarose 6% Agarose

Porous structure determines retention & rate of diffusion. Also exhibits syneresis – a self-expression of surface moisture

Agar & Agarose Properties

REAL VAN HER COLOR TO PAINTED SURFIT 2023

SOLOR TO PAINTED SURFIT 20

•

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

Agar or Agarose? Which Type?

- What is the goal of the treatment step?
 - Simple hydration/humidification: Agar (\$)
 - Increased gel flexibility: Agar
 - Large surface areas: Agar (\$)
 - Controlled hydration/humidification: Agarose
 - Controlled delivery of aqueous cleaning solutions: Agarose
 - Aqueous cleaning on water-sensitive surfaces: Agarose
 - Controlled delivery of temperature-sensitive reagents:
 Low-gelation-temperature agarose (Very expensive!)

Preferred agarose: Agarose LE (low electroendosmosis).

67

AGAR & AGAROSE IN CONSERVATION: Applications

Agar & Agarose – Cold Methods

- Use of cast agarose:
 - Surface testing
 - Controlled moisture delivery
 - Stain reduction/poulticing
 - Surface cleaning

69

Estimating Surface pH and Conductivity

Erica Rota, Claudio Bozzi, Paolo Cremonesi & Anna Lucchini (2021) Study of the Best Methodology for Measuring Surface pH of Linen Canvas, *Studies in Conservation*, 66:6, 313-320, DOI: 10.1080/00393630.2020.1838711

Agarose – Grated Crumbs

Cremonisi (2016)

Brittle agarose gel can be grated or pushed through a screen to create agarose crumbs

Crumbs can be loaded with an aqueous solution and worked across a surface like eraser crumbs

Fragmented Gels

75

Warm Application/In-situ Casting

Concerns:

- Temperature stability of original surface
- · Ingress of fluid solution into cracks and pores
- Personal safety: Hot gel and exposed skin are a bad mix!

But consider:

- If the gel temperature is sufficiently low, you can wait to apply the warm solution to the surface just before gelation
- If the gel concentration is high, you can expect faster gelation, limiting ingress
- Temporary hydrophobization may protect cracks and pores

Agarose – Warm Brush/ Poured Application

79

Agar – Sprayed Application

•

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

ADDITIONAL TARGET GEL PROPERTIES

81

Target Property: Flexibility

Rigid gels on rough surfaces:

- •Uneven moisture delivery
- Lesser capillary action

Flexible gels:

- Improved surface conformation
- More consistent cleaning on rough surfaces
- Increased capacity for surface agitation

•

Target Property: Gel Cohesion

More cohesive gels:

- · Less likely to adhere to swollen coatings/accretions
- Less likely to leave significant residues
- Generally easier to remove from surfaces

83

Target Property: Increased Moisture Retention

With increased moisture retention:

- Slower delivery
- Possibilities for moisture delivery to sensitive surfaces
- Possibilities for long dwell times

Generally: Increased moisture retention affords greater control by dilating the variable of time

Target Property: Thermal Stability

Possible warm/hot and cold applications

- Increasing effectiveness/activity of aqueous preparations
- Manipulating adhesive/coating properties according to T_q

Effect of freezing on gel structure

- · Many hydrogels express significant water upon freezing
- · Densification of gel network

Effect of heating on gel structure

· Softening of gel structure; loss of gel strength

It could be beneficial to have a gel that could withstand both heating and cooling

85

Target Property: Reduced Possibility for Residues No Barrier Agarose 40 minutes No Barrier No Barrier Filter Paper Handmade Rag Machine-made Woodpulp Machine-made Woodpulp

Nanorestore® Gels: Dry

Nanorestore Gel Dry

- poly(hydroxyethylmethacrylate)/ poly(vinyl pyrrolidone) [pHEMA/PVP] <u>semi-interpenetrated</u> chemical hydrogels (i.e. covalently bonded)
- Available: 'Medium Water Retention' & 'High Water Retention' (MWR & HWR)
- Highly retentive in some applications, safe for water-sensitive surfaces

Image: CSGI

89

Nanorestore® Gels: Dry

Moisture Retention

Table 1 Compositions (w/w) of the selected semi-IPN hydrogels; HEMA/MBA and HEMA/PVP ratios

	H50	H58	H65
HEMA (%)	25.0	16.8	10.5
MBA (%)	0.2	0.2	0.2
PVP (%)	24.9	25.1	24.4
Water (%)	49.9	57.9	64.9
HEMA/MBA ratio	$1:1 \times 10^{-2}$	$1:1.5 \times 10^{-2}$	$1:2 \times 10^{-1}$
HEMA/PVP ratio	50/50	40/60	30/70

The acronym HXX refers to the XX percentage of water in the reaction mixture

Table 2 Some physicochemical properties of the selected p(HEMA)/ PVP, acrylamide [7] and polysaccharide hydrogels

		$G\left(\%\right)$	EWC (%)	Water release (mg/cm ²)
H50		90	72	8
H58		78	80	15
H65		74	87	16
Acryla	amide "Hard"	95	95	27
Acryla	amide "Soft"	88	97	56
AgarA	Art	-	97	30
Kelco	gel	-	97	33

Appl. Phys. A (2014) 114:705–710 DOI 10.1007/s00339-013-8150-0

Nanorestore® Gels: Dry

Practical Considerations

- •EUR 18.00/150cm² sheet
- Very consistent processing
- •Clear, somewhat brittle gels
- Can be loaded with aqueous solutions, microemulsions, structured fluids, some polar solvents
- Possible to clean and re-use

91

Nanorestore® Gels: Dry

Practical Challenges

- •MWR and HWR Dry gels can develop cracks and tears
- •Gels become unusable if allowed to dry fully
- •Gels can support biological growth; cleaning is difficult
- If loaded with solvent, further use for aqueous delivery is not recommended

AQUEOUS METHODS FOR THE CLEANING OF PAINTED SURFIGIA. LATVIA $_{\rm I-4}$ AUGUST 2023

Nanorestore® Gels: Dry Applications

Recommended Applications

- •Use on "flat" surfaces
- ·Humidification, surface cleaning, stain reduction
- Controlled delivery on water-sensitive surfaces
- Slow swelling and dewetting of adhesive residues and coatings
- •Cracked/porous surfaces where residues are a concern

93

Nanorestore® Gels: Dry Applications

Images: A. Camp

AQUEOUS METHODS FOR THE CLEAN RIGA, LATVIA 1-4 AUGUST 2023

Nanorestore® Gels: Peggy

Nanorestore Gel Peggy

- poly(vinyl alcohol) and poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels
- Available: Peggy 5 [poly(vinyl alcohol)] and Peggy 6 [PVA/PVP] as sheets, gums (erasers), and pens
- Flexible, elastic
- Conforms to rough surfaces (Peggy 6 more so than Peggy 5)

Image: CSG

95

Nanorestore® Gels: Peggy

Practical Considerations

- •EUR 18.00/150cm² sheet
- Very consistent processing
- ·Semi-opaque, flexible, elastic gels
- •Can be loaded with aqueous solutions, structured fluids, microemulsions, some polar solvents
- Possible to clean and re-use

DS FOR THE CLEANING OF PAINTED SUR 1-4 AUGUST 2023

Nanorestore® Gels: Peggy

Practical Challenges

- Peggy gels less retentive than Dry; Peggy 6 less retentive than Peggy 5
- •Gels become unusable if allowed to dry fully
- •Peggy gels can support biological growth readily
- ·More limited solvent compatibility than Dry gels
- If loaded with solvent, further use for aqueous delivery is not recommended

97

Nanorestore® Gels: Peggy

Recommended Applications

- •Use on "flat" or rough surfaces. Peggy 6 conforms better to rough surfaces than Peggy 5
- ·Humidification, surface cleaning, stain reduction
- •Controlled delivery on sensitive surfaces; limiting mechanical action
- Cracked/porous surfaces where residues are a concern
- Tape/adhesive removal
- Adhesive reactivation

EOUS METHODS FOR THE CLEANING OF PAINTED SURF A. LATVIA 1-4 AUGUST 2023

1

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

Hydrogel Solvent Compatibility

Because Nanorestore® gels are consistent from batch to batch, their polar solvent compatibility is known:

Gel Dry

Acetone

2-Propanol **Xylenes Toluene** Gel Peggy

Hydroalcoholic solvents (50%)

Benzyl alcohol Acetic acid Ethylene glycol

Butyl acetate 2-Methoxyethanol Cyclohexane Ethyl acetate Ethanolamine Heptane Propylene glycol

Methyl ethyl ketone Ethanol

Methanol 1-Pentanol

Propylene Carbonate 2-Butanol

99

Nanorestore® Gels: Peggy Bartoletti, A., Barker, R., Chelazzi, D. et al. Reviving WHAAM! a comparative evaluation of cleaning systems for the conservation treatment of Roy Lichtenstein's iconic painting. Herit Sci 8, 9 (2020). https://doi.org/10.1186/s40494-

Nanorestore® Gels: Key Decisions

- Surface area to be treated (can be cost prohibitive)
- Improved surface contact (Peggy gels) vs. improved moisture retention (Dry gels)
- Solvent compatibility
- Are other gels feasible?

101

FLEXIBLE HYDROGELS

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

XANTHAN-KONJAC HYDROGELS

105

Xanthan Gum

Bacterial branched ionic gum

- Cellulose backbone
- Anionic trisaccharide side chains

Practical Considerations

- •Inexpensive (USD 6.80/100g)
- ·Readily hydrates in cold water
- •Typical concentrations: 0.75-1.5%
- Very viscous solutions
- Exceptional shear thinning
- •Non-gelling on its own

Konjac Glucomannan

Plant polysaccharide

- Root vegetable
- •Glucose/mannose backbone
- Acetyl side groups

Practical Considerations

- Inexpensive (USD 7.00/100g)
- ·Readily hydrates in cold water
- •Typical concentrations: 0.75-1.5%
- Very viscous solutions
- Shear thinning
- •Can form a hydrogel by treating with pH 9+ & heating to 90°C

107

Xanthan/Konjac Hydrogels: Exceptional Elasticity

- Prepared in the same methods as agar/ose, creating a strong, clear, elastic gel
 - 1% Xanthan gum
 - 1% Konjac glucomannan

Preparing Xanthan/ Konjac Hydrogels

Recommended: immersion circulator

- Set temperature to 190°F
- Prepare a solution of 1% xanthan and a second solution of 1% konjac. Stir to combine*
- Submerge in the water bath for at least one hour
- · Carefully remove from bath
- Stir to mix. Pour into Petri dish or other mold. Let cool.
- Rinse to remove unentangled polysaccharide

Microwave method works well, too.

109

Xanthan/Konjac Hydrogels: Notes

Konjac often has a "fishy" odor depending on its source and purification methods. This odor can be diminished by rinsing or by lowering the pH of the solution.

Xanthan/konjac hydrogels can be pushed to conform to surfaces, and the gel will settle into small surface irregularities AQUEOUS METHODS FOR THE CLEANING OF PAINTED SURIGA, LATVIA 1-4 AUGUST 2023

Further Modification:
Xanthan-Konjac-Agar Hydrogels

1.5% (w/v) total concentration

Not a gel - viscous fluid

Weak gels - poor performance
Flexible/elastic gel behavior
Brittle/rigid gel behavior

Brittle/rigid gel behavior

Gel adhesion to Whatman filter paper

Further Modification:
Xanthan-Konjac-Agar Hydrogels

1.5% (w/v) total concentration:

2 parts xanthan
2 parts konjac
1 part agar

Blend dry ingredients

SLOW addition to
water with mixing
Heat > 90°C
Cast

Further Modification: Xanthan-Konjac-Agar Hydrogels

115

Further Modification: Xanthan-Konjac-Agar Hydrogels

<u>In this video</u>:

 $\overline{2\%}$ (w/v) total concentration:

- 2 parts xanthan
- 2 parts konjac
- 1 part agar

Estimated cost, including power for stirring and operation of immersion circulator bath (4 hours):

\$0.87 for 20cm x 25cm x 2mm gel

•

Practical Use: Xanthan-Konjac-Agar Hydrogels

"Loading" a cleaning solution:

- Initial preparation of the gel
- · Soaking a freshly prepared gel

Xanthan-konjac-agar(ose) gels can be dehydrated and stored.

Dehydrated gels can be rehydrated with aqueous cleaning solutions, with minimal change to gel performance.

117

Case Study: GACP1293, Deposition with Angels

- Deaccessioned from Harvard Univ.
- Anecdotes: Used for testing varnishes and cleaning, dating to Gettens and Stout.
- At WUDPAC:
 - Microscopy studies
 - · Cleaning experimentation

•

Case Study: Deposition with Angels

119

Case Study: Deposition with Angels

- Residual varnish: slight effect with alcohols and ketones
- Pigment pickup with other polar solvents
- Aqueous tests:
 - > pH 8: some coating fractions removed
 - · Significant improvement with chelating agents; DTPA most effective
 - · Additional improvement with deoxycholic acid

• Goal: reduced mechanical action

Ionic Crosslinking: XKA Gels

Early tests:

- 0.4g Calcium acetate hydrate/1L solution
- Resulting gels show increased toughness
- Significant reduction of residue autofluorescence on filter paper

123

CURDLAN HYDROGELS

Curdlan

Bacterial beta-glucan

•(1 \rightarrow 3)- β -D-glucose polymer, high MW

Practical Considerations

- •Fairly expensive (USD 40.00/100g)
- •Gels upon heating beyond hydration temperature (heat set)
- •Forms an opaque **elastic**, **retentive gel** upon heating above 195°F.
- •Thermo-irreversible; good temperature stability
- •Can form a softer thermo-reversible gel if not heated >150°F
- •Gel structure, flexibility & toughness depend on solution concentration and solution heating

125

Preparing Curdlan Hydrogels

Recommended: immersion circulator

- Set temperature to 195°F
- Prepare a <u>curdlan slurry, 5-10% (w/v)</u> in distilled water, in a small plastic zip-top baggie. Shake and manipulate to achieve even dispersion.
- Pour <u>a thin layer</u> (~2-3 mm) of the slurry into a flatbottomed beaker or jar.
- Suspend the container in the water bath for at least 5 minutes, up to 1 hour.
- Allow the curdlan gel to cool. Remove from container.
- Rinse to remove unentangled polysaccharide

JUS METHODS FOR THE CLEANING OF PAINTED SURF LATVIA 1-4 AUGUST 2023

AQUEOUS METHODS FOR THE CLEANING RIGA, LATVIA 1-4 AUGUST 2023

Preparing Curdlan Hydrogels

Curdlan gels will take on the shape of any form once the dispersion reaches the heat setting temperature.

Ideas:

- blocks
- sheets
- · "noodles"
- lozenges/pointed erasers

131

Curdlan Gels: Useful Properties

- · Heat setting additional options for gel preparation
- Subsequent temperature stability
 - Can be warmed/heated
 - Can be frozen!
- Impressive water retention
- Very high gel strength & cohesion

AQUEOUS METHODS FOR THE CLEANING OF PAINTED SUR RIGA, LATVIA $1-4~{\rm AUGUST}~2023$

Comparing Curdlan & Peggy Gels

Time-lapse: 30s, water transfer to KimWipe. 10% Curdlan (left) and Peggy 5 Gum (right), both loaded with the same aqueous solution.

133

Comparing Curdlan & Peggy Gels

Curdlan Hydrogels: Notes

Curdlan gels will promote biological growth after just a few days; limit air exposure

Curdlan gels can be warmed to increase the activity of diffused moisture

Gel strength decreases with increased inorganic salt concentration and/or solvent in initial formulation; recommended to prepare a gel first and then load it with a cleaning solution

135

Mechanical Techniques

If the surface can take some amount of agitation:

- · Hydrogels can be loaded with water/solutions and used as a damp sponge or eraser
- Hydrogels can be cast or cut to useful shapes

Consider:

- A cohesive, elastic gel will not leave fragments behind as frequently as a brittle gel
- If the gel is too retentive, the solution may not be delivered as expected

Curdlan Hydrogels: Recommended Uses

Controlled humidification:

- · Cast sheets for overall humidification
- "Noodles" for humidifying individual creases

Dampened eraser:

· Cut/cast blocks

Delivery of aqueous cleaning preparations

137

QUICK NOTE ABOUT CLEARING/RINSING

Clearing Aqueous Solutions

"pH-Adjusted Water"

- · dilute mixtures of acetic acid and ammonium hydroxide
- · both components volatile
- buffered between 3.8-5.6 and 8.3-10.1
- · ionic strength determined by concentration
- formulate according to pH used and estimated conductivity of surface

139

SUMMARY

Residues

- · Increased likelihood of residues:
 - "Fresh" gels rinse with distilled water to remove unentangled polysaccharides
 - Lower concentration gels
 - Softer gels
 - Cracked, porous surfaces
- Reduced incidence of residues:
 - Tissue barrier but with altered capillary action
 - Temporary hydrophobization
 - Clear using appropriate rinsing solution* loaded into gel

143

Residues Visualization

- Qualitative examination:
 - UV-induced visible luminescence
 - Particularly useful for absorbent surfaces
 - See: Sullivan (2017)
 - Optical microscopy

AQUEOUS METHODS FOR THE CLEANING OF PAINTED SURIGA, LATVIA 1-4 AUGUST 2023

103

Practical Considerations: Rinsing/Clearing

Questions to consider:

- · How porous is the substrate/structure?
- Are there any sensitivities to moisture to anticipate?
- Does the delivery method work well with the structure and condition of the surface?
- How likely is clearance? Are you willing to leave material behind as part of your treatment?

145

Clearing Aqueous Solutions

- Goal 1: prevent precipitation of solubilized constituents
- Goal 2: prevent new solubilization of preserved materials
- Sub-goal: continue/slow down cleaning

US METHODS FOR THE CLEANING OF PAINTED S LATVIA 1-4 AUGUST 2023

Clearing Aqueous Solutions

"pH-Adjusted Water"

- · dilute mixtures of acetic acid and ammonium hydroxide
- · both components volatile
- buffered between 3.8-5.6 and 8.3-10.1
- · ionic strength determined by concentration
- formulate according to pH used and estimated conductivity of surface

147

AFTERNOON SESSION: EXPERIMENTING WITH SPREADABLE GELS & HYDROGELS

AQUEOUS METHODS FOR THE CLEANING OF PAINTED RIGA, LATVIA $1-4~{\rm AUGUST}~2023$

Thank you for your attention.

Questions? Contact:
Matthew Cushman mcushman@udel.edu

fin.